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1 Introduction
In this paper, we consider the following discrete sys-
tem boundary value problem:

△2u1(k − 1) + f1(k, u1(k), u2(k)) = 0,
k ∈ [1, T ],

△2u2(k − 1) + f2(k, u1(k), u2(k)) = 0,
k ∈ [1, T ],

(1)
with the boundary condition:

△u1(0) = au1(l1), △u1(T ) = bu1(l2),
△u2(0) = au2(l1), △u2(T ) = bu2(l2),

(2)

where T ≥ 1 is a fixed positive integer, △u(k) =
u(k + 1) − u(k), △2u(k) = △(△u(k)), [1, T ] =
{1, 2, . . . , T} ⊂ Z the set of all integers, l1, l2 ∈
[1, T ], l1 < l2, 0 ≤ a < 1

l1
, 0 ≤ b < 1

l2
and 0 ≤

al1 + bl2 < 1 + a, δ = a(1− bl2)− b(1− al1) > 0.
Many problem in applied mathematics lead to

the study of difference system, see [1] and [2]
and the references therein. Recently, much atten-
tion has been paid to the existence of positive so-
lutions of scalar difference equations [3],[4],[5],[6],
[9],[14],[18],[19],[20] and discrete difference systems
[8],[13],[16].

In [15], Tian considered the multiplicity for four-
point boundary value problems

△2u(k − 1) + q(k)f(k, u(k),△u(k)) = 0,

k ∈ N(1, T ),

u(0) = au(l1), u(T + 1) = bu(l2).

Sun and Li [14] investigated the following discrete
system

△2u1(k) + f1(k, u1(k), u2(k)) = 0, k ∈ [0, T ],

△2u2(k) + f2(k, u1(k), u2(k)) = 0, k ∈ [0, T ],

with the Dirichlet boundary condition

u1(0) = u1(T + 2) = 0, u2(0) = u2(T + 2) = 0,

by using Leggett-Williams fixed point theorem, suf-
ficient conditions are obtained for the existence three
positive solutions to the above system.

Motivated by the above works, our purpose in this
paper is to study problem (1),(2). Under suitable con-
ditions on f1 and f2, we show that the boundary value
problems (1),(2) have one or two positive solutions.
Since the construction of Green functions for differ-
ence equations may be more complicated and over-
loaded than that for differential equations, the diffi-
culty of this paper is constructing Green functions for
(1)(2), which play important roles in the verifying of
the existence of positive solutions for the given differ-
ence systems . Furthermore, the system (1), (2)con-
sists of two second order difference equations. To
the authors best knowledge, no paper has constructed
Green functions for a second order four-point differ-
ence equation (1), (2). This paper attempts to fill this
gap in the literature.

The rest of the paper is organized as follows.
First, we shall state two fixed point theorems, the
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first of which is a nonlinear alternative of Leray-
Schauder type, whereas the second is krasnosel’skii’s
fixed point theorem in a cone. We also present the
Green’s function for problem (1), (2). In Section 2,
criteria for the existence of one and two positive so-
lutions to boundary value problems (1), (2) are estab-
lished. In Section 3, three positive solution for bound-
ary value problems (1), (2)are obtained. In section 4,
we give the conclusion of my paper.

1.1 Several lemmas
In order to prove our main results, the following well-
known fixed point theorems are needed.

Lemma 1 ([7]) Let X be a Banach space with E ⊆
X closed and convex. Assume U is a relatively open
ball of E with 0 ∈ U and T : Ū → E is a continuous
and compact map. Then, either
(a) T has a fixed point in Ū , or
(b) there exists u ∈ ∂U and λ ∈ (0, 1) such that
u = λTu.

Lemma 2 ([7]) Suppose X is a Banach space, K ⊂
X is a cone. Assume Ω1,Ω2 are open subsets of X
with θ ∈ Ω1, Ω1 ⊂ Ω2. Let T : K ∩ (Ω2\Ω1) → K
be a completely continuous operator such that either
(a) ∥Tu∥ ≤ ∥u∥, ∀u ∈ K ∩ ∂Ω1 and ∥Tu∥ ≥
∥u∥, ∀u ∈ K ∩ ∂Ω2, or
(b) ∥Tu∥ ≥ ∥u∥, ∀u ∈ K ∩ ∂Ω1 and ∥Tu∥ ≤
∥u∥, ∀u ∈ K ∩ ∂Ω2.
Then, T has a fixed point in K ∩ (Ω2\Ω1).

Lemma 3 Let δ := a(1− bl2)− b(1− al1) ̸= 0, then
for y : [1, T ] → R+, the problem

△2u(k − 1) + y(k) = 0, k ∈ [1, T ], (3)

△u(0) = au(l1), △u(T ) = bu(l2), (4)

has a unique solution

u(k) =
1− al1 + ak

δ

T∑
j=1

y(j)

−+
a(1− bl2) + abk

δ

l1−1∑
j=1

(l1 − j)y(j)

−b(1− al1) + abk

δ

l2−1∑
j=1

(l2 − j)y(j)

−
∑k−1

j=1(k − j)y(j).

Proof: We proceed from (3) and obtain

△2u(k − 1) = −y(k),

after adding from 1 to i− 1, we have

△u(i− 1) = △u(0)−
i−1∑
j=1

y(j), (5)

and then adding (5) from 1 to k,

u(k) = u(0) + k△u(0)−
∑k

i=1

∑i−1
j=1 y(j)

= u(0) + k△u(0)−
∑k−1

j=1(k − j)y(j).
(6)

From (4) and (6), we can see that

u(k) =
1− al1 + ak

δ

T∑
j=1

y(j)

+
a(1− bl2) + abk

δ

l1−1∑
j=1

(l1 − j)y(j)

−b(1− al1) + abk

δ

l2−1∑
j=1

(l2 − j)y(j)

−
k−1∑
j=1

(k − j)y(j).

⊓⊔

Lemma 4 Let δ ̸= 0, the Green’s function for the
boundary value problem

−△2u(k − 1) = 0, k ∈ [1, T ], (7)

△u(0) = au(l1), △u(T ) = bu(l2), (8)

is given by

G(k, j) =



1

δ
(1 + kb− bl2),

1 ≤ j ≤ min{k − 1, l1 − 1} ≤ T ;
1

δ
[(bj + 1− bl2)

+(j − k)(abl2 − abl1 − a)],
0 ≤ k ≤ j ≤ l1 − 1;

1

δ
(bk + 1− bl2)(1 + aj − al1),

l1 ≤ j ≤ min{k − 1, l2 − 1} ≤ T ;
1

δ
(bj + 1− bl2)(1 + ak − al1),

max{k, l1} ≤ j ≤ l2 − 1;
1

δ
(1 + ak − al1) + (j − k),

l2 ≤ j ≤ k − 1 ≤ T ;
1

δ
(1 + ak − al1),

max{k, l2} ≤ j ≤ T.

Lemma 5 Suppose 1 < l1 < l2 < T + 1, 0 < a <
1
l1
, 0 < b < 1

l2
, 0 < al1 + bl2 ≤ 1 + a, δ > 0. The

Green’s function G(k, j) satisfies

G(k, j) > 0, for 0 < j, k < T + 1, (9)
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G(k, j) ≥ γ max
0≤k≤T+1

G(k, j), for

l1 ≤ k ≤ l2, 1 < j < T + 1,
(10)

where γ is defined as

γ = min

{
1 + bl1 − bl2

(b(T + 1) + 1− bl2)(1 + al2 − al1)
,

1 + bl1 − bl2
a(T + 1) + 1− al1

}
,

(11)

Proof: Notice that

min
k∈[l1,l2]

G(k, j) = min

{
1

δ
(1 + bl1 − bl2),

1

δ
(1 + bl1 − bl2)(1 + aj − al1),

1

δ

}
=

1

δ
(1 + bl1 − bl2).

max
k∈[0,T+1]

G(k, j) = max

{
1

δ
(1 + b(T + 1)− bl2),

1

δ
(1 + b(T + 1)− bl2)(1 + aj − al1),

1

δ
(bj + 1− bl2)(1 + aj − al1),

1

δ
(a(T + 1) + 1− al1) + (j − k),

1

δ
(aj + 1− al1)

}
= max

{
1

δ
(1 + b(T + 1)− bl2)(1 + al2 − al1),

1

δ
(a(T + 1) + 1− al1)

}
.

Let

γ = min

{
1 + bl1 − bl2

(b(T + 1) + 1− bl2)(1 + al2 − al1)
,

1 + bl1 − bl2
a(T + 1) + 1− al1

} ,

it is obvious that 0 < γ < 1. Therefore, we have

G(k, j) ≥ γ max
0≤k≤T+1

G(k, j),

for l1 ≤ k ≤ l2, 1 < j < T + 1.

⊓⊔

2 Main result
Let the Banach space B = {u : [0, T + 1] → R} be
endowed with norm,

∥u∥0 = max
k∈[0,T+1]

|u(k)|,

and X = B ×B with norm

∥(u1, u2)∥ = max{∥u1∥0, ∥u2∥0},

and

K =

{
(u1, u2) ∈ X : ui(k) ≥ 0, k ∈ [0, T + 1],

min
k∈[l1,l2]

ui(k) ≥ γ∥ui∥0, i = 1, 2

}
,

where γ is defined as (11), then K is a cone in X.
The following theorem gives an existence princi-

ple for boundary value problems (1),(2). This results
is used later to establish the existence of one positive
solution of (1),(2).

Theorem 6 Let fi : [1, T ] × R2 → R, i = 1, 2 be
continuous. Suppose that there exists a constant M,
independent of λ, such that

∥u∥ ̸= M, (12)

for any solution u = (u1, u2) ∈ X of the boundary
value problem

△2u1(k − 1) + λf1(k, u1(k), u2(k)) = 0,
k ∈ [1, T ],

△2u2(k − 1) + λf2(k, u1(k), u2(k)) = 0,
k ∈ [1, T ],

(13)
and

△u1(0) = au1(l1), △u1(T ) = bu1(l2),
△u2(0) = au2(l1), △u2(T ) = bu2(l2),

(14)
where λ ∈ (0, 1). Then, boundary value problems
(1),(2) have at least one solution u = (u1, u2) ∈ X
such that ∥u∥ ≤ M.

Proof: Let the operator T : X → X be defined by

T (u1, u2) = (U1(k), U2(k)) k ∈ [0, T + 1],

where

Ui(k) =
T∑

j=1

G(k, j)fi(j, u1(j), u2(j)), i = 1, 2.

Then, it is noted that T is continuous and completely
continuous and that solving (13),(14) is equivalent to
finding a u ∈ X such that u = λTu.

In the context of Lemma 1, let

U = {u = (u1, u2) ∈ X : ∥u∥ < M} .

In view of (12), we cannot have Conclusion (b) of
Lemma 1, and hence, Conclusion (a) of lemma 1
holds, i.e., (1),(2) have a solution u ∈ Ū with ∥u∥ ≤
M. The proof is complete. ⊓⊔
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Our next results offer the existence of one and
two positive solutions of (1), (2). For convenience,
the conditions needed are listed as follows.
(H1) fi : [1, T ] × [0,∞) × [0,∞) → [0,∞) is con-
tinuous, i = 1, 2;
(H2) For each i ∈ {1, 2}, assume that

fi(k, u1, u2) ≤ αi(k)ωi1(u1)ωi2(u2),

for (k, u1, u2) ∈ [1, T ]× [0,∞)× [0,∞),

where αi : [1, T ] → (0,∞), and ωil : [0,∞) →
[0,∞), l = 1, 2 are continuous and nondecreasing;
(H3) There exists r > 0 such that

r > diωi1(r)ωi2(r), i = 1, 2,

where

di = max
k∈[0,T+1]

T∑
j=1

G(k, j)αi(j);

(H4) For each i = {1, 2}, there exist τil : [l1, l2] →
(0,∞), l = 1, 2 such that

fi(k, u1, u2) ≥ τil(k)ωil(ul), k ∈
[l1, l2], ul > 0;
(H5) There exists R > r such that for ∀ l ∈
{1, 2}, x ∈ [γR,R], the following holds for some
i (depending on l) in {1, 2}:

x ≤ ωil(x)γ
l2∑

j=l1

G(σil, j)τil(j) (15)

where σil ∈ [0, T + 1] is defined as

l2∑
j=l1

G(σil, j)τil(j) = max
k∈[0,T+1]

l2∑
j=l1

G(k, j)τil(j);

(H6) There exists L ∈ (0, r) such that for ∀l ∈
{1, 2}, x ∈ [γr, r], inequality (15) holds for some i
(depending on l) in 1, 2.

Theorem 7 Suppose that (H1) − (H3) hold. Then,
boundary value problems (1),(2) have a positive solu-
tion u∗ = (u∗1, u

∗
2) ∈ X such that ∥u∗∥ < r, where r

is defined by (H3).

Proof: First, we consider the following boundary
value problem

△2u1(k − 1) + f̃1(k, u1(k), u2(k)) = 0,
k ∈ [1, T ],

△2u2(k − 1) + f̃2(k, u1(k), u2(k)) = 0,
k ∈ [1, T ],

(16)

and

△u1(0) = au1(l1), △u1(T ) = bu1(l2),
△u2(0) = au2(l1), △u2(T ) = bu2(l2),

(17)

where f̃i : [1, T ]×R2 → R is defined by

f̃i(k, u1, u2) = fi(k, |u1|, |u2|), i = 1, 2.

It is obvious that f̃i is continuous.
We shall show that (16), (17) have a solution. For

this, we look at the following problem:
△2u1(k − 1) + λf̃1(k, u1(k), u2(k)) = 0,

k ∈ [1, T ],

△2u2(k − 1) + λf̃2(k, u1(k), u2(k)) = 0,
k ∈ [1, T ],

(18)
and

△u1(0) = au1(l1), △u1(T ) = bu1(l2),
△u2(0) = au2(l1), △u2(T ) = bu2(l2),

(19)

where λ ∈ (0, 1). Let u = (u1, u2) ∈ X be any solu-
tion of (18), (19). We claim that

∥u∥ ̸= r. (20)

In fact, it is clear that

u1(k) = λ
∑T

j=1G(k, j)f̃1(j, u1(j), u2(j)),

k ∈ [0, T + 1],
(21)

u2(k) = λ
∑T

j=1G(k, j)f̃2(j, u1(j), u2(j)),

k ∈ [0, T + 1].
(22)

Noting that (21), (H2) and (H3), it follows that

0 ≤ u1(k) = λ
T∑

j=1
G(k, j)f̃1(j, u1(j), u2(j))

= λ
T∑

j=1
G(k, j)f1(j, |u1(j)|, |u2(j)|)

≤ λ
T∑

j=1
G(k, j)α1(j)ω11(|u1(j)|)ω12(|u2(j)|)

≤ λ
T∑

j=1
G(k, j)α1(j)ω11(∥u∥)ω12(∥u∥)

≤ ω11(∥u∥)ω12(∥u∥) max
k∈[0,T+1]

T∑
j=1

G(k, j)α1(j)

= d1ω11(∥u∥)ω12(∥u∥), ∀k ∈ [0, T + 1].

This immediately leads to

∥u1∥0 ≤ d1ω11(∥u∥)ω12(∥u∥). (23)

Similarly, from (22), (H2) and (H3), we have

∥u2∥0 ≤ d2ω21(∥u∥)ω22(∥u∥). (24)
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If
∥u∥ = ∥up∥0, for some p ∈ 1, 2,

then (23), (24) yield

∥u∥ ≤ dpωp1(∥u∥)ωp2(∥u∥),

from which we conclude, by comparing with (H3),
that ∥u∥ ̸= r.

It now follows from Theorem 6 that bound-
ary value problems (16),(17) have a solution u∗ =
(u∗1, u

∗
2) ∈ X such that ∥u∗∥ ≤ r. Using a similar

argument as above, we see that ∥u∗∥ ̸= r. Therefore,

∥u∗∥ < r. (25)

Moreover, for ∀ k ∈ [0, T + 1], we have

u∗1(k) =
T∑

j=1
G(k, j)f̃1(j, u

∗
1(j), u

∗
2(j))

=
T∑

j=1
G(k, j)f1(j, |u∗1(j)|, |u∗2(j)|),

(26)

u∗2(k) =
T∑

j=1
G(k, j)f̃2(j, u

∗
1(j), u

∗
2(j))

=
T∑

j=1
G(k, j)f2(j, |u∗1(j)|, |u∗2(j)|).

(27)

and it follows immediately that

u∗i (k) ≥ 0, k ∈ [0, T + 1], i = 1, 2, (28)

so,

u∗1(k) =
T∑

j=1
G(k, j)f1(j, |u∗1(j)|, |u∗2(j)|)

=
T∑

j=1
G(k, j)f1(j, u

∗
1(j), u

∗
2(j)),

(29)

u∗2(k) =
T∑

j=1
G(k, j)f2(j, |u∗1(j)|, |u∗2(j)|)

=
T∑

j=1
G(k, j)f2(j, u

∗
1(j), u

∗
2(j)),

(30)

i.e., u∗ = (u∗1, u
∗
2) ∈ X is a positive solution of

boundary value problems (1) and (2) and satisfies
∥u∗∥ < r. ⊓⊔

Theorem 8 Suppose that (H1) − (H5) hold. Then,
boundary value problems (1),(2) have two positive so-
lutions u∗, ū ∈ X such that

0 ≤ ∥u∗∥ < r < ∥ū∥ ≤ R,

where r and R are defined by (H3) and (H5).

Proof: The existence of u∗ is guaranteed by Theorem
7. We shall employ Lemma 2 to prove the existence
of ū.

Let T : K → X be defined by

T (u1, u2) = (U1(k), U2(k)), k ∈ [0, T + 1],

where

Ui(k) =
T∑

j=1

G(k, j)fi(j, u1(j), u2(j)), i = 1, 2.

First, we shall show that T maps K into itself. For
this, let u = (u1, u2) ∈ K. Then, it follows immedi-
ately that

Ui(k) ≥ 0, k ∈ [0, T + 1], i = 1, 2. (31)

Then, we obtain for each i ∈ {1, 2},

Ui(k) =
T∑

j=1
G(k, j)fi(j, u1(j), u2(j))

≤
T∑

j=1
maxk∈[0,T+1]G(k, j)fi(j, u1(j), u2(j)),

k ∈ [0, T + 1].

As a result,

∥Ui∥0 ≤
T∑

j=1
maxk∈[0,T+1]G(k, j)fi(j, u1(j), u2(j)),

i = 1, 2.
(32)

Now, in view of (32) and Lemma 5, we have for ∀k ∈
[l1, l2], i = 1, 2,

Ui(k) =
T∑

j=1
G(k, j)fi(j, u1(j), u2(j))

≥ γ
T∑

j=1
max

k∈[0,T+1]
G(k, j)fi(j, u1(j), u2(j))

≥ γ∥Ui∥0.

Therefore,

min
k∈[l1,l2]

Ui(k) ≥ γ∥Ui∥0, i = 1, 2. (33)

Combining (31) and (33), we obtain T (K) ⊆ K.
Also, the standard arguments yield that T is com-
pletely continuous.

Let
Ω1 = {u ∈ X : ∥u∥ < r}

and Ω2 = {u ∈ X : ∥u∥ < R}.
We claim that
(i) ∥Tu∥ ≤ ∥u∥, for u ∈ K ∩ ∂Ω1,
(ii) ∥Tu∥ ≥ ∥u∥, for u ∈ K ∩ ∂Ω2.
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To justify (i), let u = (u1, u2) ∈ K ∩ ∂Ω1, then
∥u∥ = r and by (H2) and (H3) we have

0 ≤ Ui(k) =
T∑

j=1
G(k, j)fi(j, u1(j), u2(j))

≤
T∑

j=1
G(k, j)αi(j)ωi1(u1(j))ωi2(u2(j))

≤ ωi1(∥u∥)ωi2(∥u∥)
T∑

j=1
G(k, j)αi(j)

≤ ωi1(∥r∥)ωi2(∥r∥) max
k∈[0,T+1]

T∑
j=1

G(k, j)αi(j)

= diωi1(∥r∥)ωi2(∥r∥) < r = ∥u∥,
k ∈ [0, T + 1], i = 1, 2.

Therefore, ∥Ui∥0 ≤ ∥u∥, i = 1, 2, and so

∥Tu∥ = max{∥U1∥0, ∥U2∥0} ≤ ∥u∥.

Next, we prove (ii). Let

u = (u1, u2) ∈ K ∩ ∂Ω2.

So,

∥u∥ = max{∥u1∥0, ∥u2∥0} = R = ∥up∥0,

for some p ∈ {1, 2}. Then, it follows that

0 ≤ up(k) ≤ R, k ∈ [0, T + 1],

and
up(k) ≥ γR, k ∈ [l1, l2].

Thus, we have

γR ≤ up(k) ≤ R, k ∈ [l1, l2]. (34)

In view of (34), (H4) and (H5), we find that the fol-
lowing holds for some i (depending on p) in {1, 2} :

Ui(σip) =
T∑

j=1
G(σip, j)fi(j, u1(j), u2(j))

≥
l2∑

j=l1

G(σip, j)fi(j, u1(j), u2(j))

≥
l2∑

j=l1

G(σip, j)τip(j)ωip(up(j))

≥
l2∑

j=l1

G(σip, j)τip(j)ωip(γR)

≥
l2∑

j=l1

G(σip, j)τip(j)

γR

γ
l2∑

j=l1

G(σip, j)τip(j)

= R

= ∥u∥.

Hence, ∥Ui∥0 ≥ ∥u∥, and so ∥Tu∥ ≥ ∥u∥.
Having obtained (i) and (ii), it follows from

Lemma 2 that T has a fixed point ū ∈ K ∩ (Ω2\Ω1),
i.e., ū is a positive solution of (1), (2) and

r ≤ ∥ū∥ ≤ R.

Using a similar argument as in the proof of Theorem
7, we see that

r < ∥ū∥ ≤ R.

⊓⊔
It is noted in Theorem 8 that ∥u∗∥ may be zero.

Our next result guarantees that ∥u∗∥ ̸= 0.

Theorem 9 Suppose that (H1) − (H6) hold. Then,
boundary value problems (1),(2) have two positive so-
lutions u∗, ū ∈ X such that

0 < L ≤ ∥u∗∥ < r < ∥ū∥ ≤ R,

where L, r and R are defined by (H3), (H5) and
(H6), respectively.

Proof: The existence of ū is guaranteed by Theorem
8. We shall employ Lemma 2 to show the existence of
u∗. Suppose that the set Ω1 and the map T : K → K
are the same as in the proof of Theorem 8.

Let

Ω3 = {u ∈ X : ∥u∥ < L}.

From the proof of Theorem 8, we see that
(i) ∥Tu∥ ≤ ∥u∥, for u ∈ K ∩ ∂Ω1;
thus, it remains to prove that
(ii) ∥Tu∥ ≥ ∥u∥, for u ∈ K ∩ ∂Ω3.
For this, let

u = (u1, u2) ∈ K ∩ ∂Ω3.

Assume that

∥u∥ = ∥up∥0 = L, for some p ∈ {1, 2}.

Then, we have

γL ≤ up(k) ≤ L, k ∈ [l1, l2]. (35)

In view of (35), (H4) and (H6), we find that the fol-
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lowing holds for some i (depending on p) in {1, 2} :

Ui(σip) =
T∑

j=1
G(σip, j)fi(j, u1(j), u2(j))

≥
l2∑

j=l1

G(σip, j)fi(j, u1(j), u2(j))

≥
l2∑

j=l1

G(σip, j)τip(j)ωip(up(j))

≥
l2∑

j=l1

G(σip, j)τip(j)ωip(γL)

=
l2∑

j=l1

G(σip, j)τip(j)

γL

γ
l2∑

j=l1

G(σip, j)τip(j)

= L

= ∥u∥.

Hence, ∥Ui∥0 ≥ ∥u∥, and so ∥Tu∥ ≥ ∥u∥.
Having obtained (i) and (ii), we conclude from

Lemma 2 that T has a fixed point

u∗ ∈ K ∩ (Ω1\Ω3),

i.e., u∗ is a positive solution of boundary value prob-
lems (1), (2) and

L ≤ ∥u∗∥ ≤ r.

Using a similar argument as in the proof of Theorem
7, we see that

L < ∥u∗∥ ≤ r.

⊓⊔
Example: Consider the following boundary value
problem:

△2u1(k − 1) + µ exp(u
1
2
1 + u

1
8
2 ) = 0,
k ∈ [1, 20],

△2u2(k − 1) + µ exp(u
1
6
1 + u

1
3
2 ) = 0,
k ∈ [1, 20],

(36)
with the boundary condition:

△u1(0) =
1
6u1(5), △u1(20) =

1
100u1(10),

△u2(0) =
1
6u2(5), △u2(20) =

1
100u2(10),

(37)
where µ > 0. It is easy to prove that (H1) − (H5)
are satisfied when µ is small enough. Hence, it fol-
lows from Theorem 8 that boundary value problems
(38), (39) have two positive solutions when µ is small
enough.

Remark 10 If conditions (H2) and (H3) are replaced
by (H2)

′ and (H3)
′, respectively, where

(H2)
′ for each i ∈ {1, 2}, assume that

fi(k, u1, u2) ≤ αi(k)ωi1(u1) + βi(k)ωi2(u2),

for (k, u1, u2) ∈ [1, T ]× [0,∞)× [0,∞),

where αi, βi : [1, T ] → (0,∞), and ωil : [0,∞) →
[0,∞), l = 1, 2 are continuous and nondecreasing;
(H3)

′ There exists r > 0 such that

r > di[ωi1(r) + ωi2(r)], i = 1, 2,

where

di = max

{
max

k∈[0,T+1]

∑T
j=1G(k, j)αi(j),

max
k∈[0,T+1]

∑T
j=1G(k, j)βi(j)

}
, i = 1, 2,

then, similar conclusions are true.

3 Three positive solution for bound-
ary value problems (1), (2)

Let the Banach space B = {u : [0, T + 1] → R} be
endowed with norm,

∥u∥0 = max
k∈[0,T+1]

|u(k)|,

and X = B ×B with norm

∥(u1, u2)∥ = max{∥u1∥0, ∥u2∥0},

and

P =

{
(u1, u2) ∈ X : ui(k) ≥ 0, k ∈ [0, T + 1],

min
k∈[l1,l2]

ui(k) ≥ γ∥ui∥0, i = 1, 2

}
,

where γ is defined as (11), then P is a cone in X.
A map α is said to be a nonnegative continuous

concave functional on P if

α : P → [0,+∞)

is continuous and

α(tx+ (1− t)y) ≥ tα(x) + (1− t)α(y)

for all x, y ∈ P and t ∈ [0, 1].
For numbers a, b such that 0 < a < b and α is a

nonnegative continuous concave functional on P we
define the following convex sets

Pa = {x ∈ P : ∥x∥ < a} ,
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P (α, a, b) = {x ∈ P : a ≤ α(x), ∥x∥ ≤ b} .
Leggett-Williams fixed point theorem. Let A :
Pc → {x ∈ P : ∥x∥ < a} be completely continuous
and α be a nonnegative continuous functional on P
such that α(x) ≤ ∥x∥ for all x ∈ Pc. Suppose there
exist 0 < d < a < b ≤ c such that
(i) {x ∈ P (α, a, b) : α(x) > a} ̸= ∅ and α(Ax) >
a for x ∈ P (α, a, b);
(ii) ∥Ax∥ < d for ∥x∥ ≤ d;
(iii) α(Ax) > a for x ∈ P (α, a, c) with ∥Ax∥ > b.

Then A has at least three fixed pointsx1, x2, x3
satisfying

∥x1∥ < d, a < α(x2),

∥x3∥ > d, and α(x3) < a.

Theorem 11 Suppose that fi : [1, T ] × [0,+∞) ×
[0,+∞) → [0,+∞) is continuous and that there ex-
ist numbers a and d with 0 < d < a such that the
following conditions are satisfied:
(i) if j ∈ [1, T ], u1, u2 ≥ 0 and u1 + u2 ≤ d;

then fi(j, u1, u2) <
d

2D
, i = 1, 2, where D =

max
k∈[0,T+1]

T∑
j=1

G(k, j);

(ii) there exists i0 ∈ {1, 2}, such that fi0(j, u1, u2) >
a

C
, j ∈ [1, T ], u1, u2 ≥ 0 and u1 + u2 ∈ [a,

a

γ
],

where C = min
k∈[l1,l2]

T∑
j=1

G(k, j);

(iii) one of the following conditions holds:

(A) lim
u1+u2→∞

max
j∈[0,T ]

fi(j,u1,u2)

u1 + u2
<

1

2D
, i = 1, 2;

(B) there exists a number c such that c >
a

γ
and

if j ∈ [1, T ], u1, u2 ≥ 0, u1 + u2 ≤ c then
fi(j, u1, u2) <

c

2D
, i = 1, 2.

Then the boundary value problem (1), (2) has at least
three positive solutions.

Proof: For u = (u1, u2) ∈ P, define

α(u) = min
k∈[l1,l2]

u1(k) + min
k∈[l1,l2]

u2(k),

A(u1, u2) = (U1(k), U2(k)) k ∈ [0, T + 1],

where

Ui(k) =
T∑

j=1

G(k, j)fi(j, u1(j), u2(j)), i = 1, 2,

then it is easy to know that α is a nonnegative con-
tinuous concave functional on P with α(x) ≤ ∥x∥ for
x ∈ P and that A : P → P is completely continuous.

For the sake of convenience, set b = a
γ .

Claim 1. If there exists a positive number r such
that

fi(j, u1, u2) <
r

2D
, i = 1, 2

for j ∈ [1, T ], u1, u2 ≥ 0, u1 + u2 ≤ r, then

A : Pr → Pr.

Suppose that u = (u1, u2) ∈ Pr, then

∥Ui∥0 = max
k∈[0,T+1]

T∑
j=1

G(k, j)fi(j, u1(j), u2(j))

<
r

2D
D =

r

2
, i = 1, 2.

Thus

∥Au∥ = ∥u1∥0 + ∥u2∥0 <
r

2
+

r

2
= r.

Then there exists a number c such that c > b and A :
Pc → Pc. From Claim 1 with r = d and (i) that A :
Pd → Pd.

Claim 2. We show that
{u ∈ P (α, a, b) : α(u) > a} ̸= ∅ and α(Au) >
a for u ∈ P (α, a, b)
In fact,

u = (u1(k), u2(k)) =

(
a+ b

4
,
a+ b

4

)

∈ {u ∈ P (α, a, b) : α(u) > a} .

For u = (u1(k), u2(k)) ∈ P (α, a, b), we have

b ≥ ∥u1∥0 + ∥u2∥0 ≥ u1(k) + u2(k)
≥ min

k∈[l1,l2]
u1(k) + min

k∈[l1,l2]
u2(k) ≥ a,

for all k ∈ [l1, l2]. Then, in view of (ii), we know that

min
k∈[l1,l2]

Ui0(k) = min
k∈[l1,l2]

T∑
j=1

G(k, j)fi0(j, u1(j), u2(j))

>
a

C
min

k∈[l1,l2]

T∑
j=1

G(k, j) = a,

and so

α(Au) = min
k∈[l1,l2]

U1(k) + min
k∈[l1,l2]

U2(k)

≥ min
k∈[l1,l2]

Ui0(k) > a.

Claim 3. If u ∈ P (α, a, c) and ∥Au∥ > b, then
α(Au) > a.
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Suppose u = (u1, u2) ∈ P (α, a, c) and ∥Au∥ >
b, then, by Lemma 5, we have

min
k∈[l1,l2]

Ui(k) = min
k∈[l1,l2]

T∑
j=1

G(k, j)fi(j, u1(j), u2(j))

= min
k∈[l1,l2]

T∑
j=1

G(k, j)

max
0≤k≤T+1

G(k, j)

max
0≤k≤T+1

G(k, j)fi(j, u1(j), u2(j)),

≥ γ
T∑

j=1
max

0≤k≤T+1
G(k, j)fi(j, u1(j), u2(j))

= γ∥Ui(k)∥0, i = 1, 2.

Thus

min
k∈[l1,l2]

Ui(k) ≥ γ∥Ui(k)∥0, i = 1, 2,

and so

α(Au) = min
k∈[l1,l2]

U1(k) + min
k∈[l1,l2]

U2(k)

≥ γ(∥U1∥0 + ∥U2∥0)
= γ∥Au∥ > γb = a.

Therefore, the hypotheses of Leggett-Williams the-
orem are satisfied, hence the boundary value prob-
lem (1), (2) has at least three positive solutions u =
(u1, u2), v = (v1, v2) and w = (w1, w2) such that

∥u∥ < d,

a < min
k∈[l1,l2]

v1(k) + min
k∈[l1,l2]

v2(k),

∥w∥ > d with min
k∈[l1,l2]

w1(k) + min
k∈[l1,l2]

w2(k) < a.

The proof is complete. ⊓⊔
Example: Consider the following boundary value
problem:

△2u1(k − 1) + f1(k, u1(k), u2(k)) = 0,
k ∈ [1, 20],

△2u2(k − 1) + f2(k, u1(k), u2(k)) = 0,
k ∈ [1, 20],

(38)
with the boundary condition:

△u1(0) =
1
6u1(5), △u1(20) =

1
100u1(10),

△u2(0) =
1
6u2(5), △u2(20) =

1
100u2(10),

(39)

fi(k, u1(k), u2(k)) =



k

4485800
+

88

224290
(u1

+u2),
0 ≤ u1 + u2 ≤ 1.

k

4485800
+

88

224290
[50(

√
u1 + u2 − 1) + 1],

u1 + u2 ≥ 1.

Then, boundary value problem (38), (39) has at least
three positive solutions.
Proof: Choose d = 1, a = 1600. By computation, we
know

γ =
57

220
, D =

112145

89
, C =

11190

89
.

Thus

fi(k, u1(k), u2(k)) =
k

4485800
+

88

224290
(u1 + u2)

<
89

224290
=

d

2D
,

for k ∈ [1, 20], 0 ≤ u1 + u2 ≤ 1, and

fi(k, u1(k), u2(k)) =
k

4485800
+

88

224290
[50(

√
u1 + u2 − 1) + 1] >

142400

11190
=

a

C
,

for k ∈ [1, 20], 1600 ≤ u1 + u2 ≤ 352000
57 .

lim
u1+u2→∞

max
j∈[0,T ]

fi(j,u1,u2)

u1 + u2
= 0 <

1

2D
, i = 1, 2.

To sum up, by an application of Theorem 11, we
know that (38), (39) has at least three positive solu-
tions.

4 Conclusion
In this paper, we first construct Green functions for
a second-order four-point difference equation, and try
to find suitable conditions on f1 and f2, which can
guarantee that the boundary value problems (1),(2)
have one, two or three positive solutions. Our work
presented in this paper has the following new fea-
tures. Firstly, BVP (1),(2) is a four-point bound-
ary value problem, which is very difficult when con-
structing Green functions. Secondly, the main tool
used in this paper is Leray-Schauder type [7], kras-
nosel’skii’s fixed point theorem in a cone [7] and
Leggett-Williams fixed point theorem [17] and the re-
sult obtained is the multiple positive solutions of BVP
(1),(2). Thirdly, the system (1), (2)consists of two sec-
ond order difference equations.
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